

Generic drugs and their role in bringing next generation products: An FDA perspective

Markham C. Luke, MD, PhD Director, Division of Therapeutic Performance (DTP) Office of Generic Drugs, FDA, HHS

February 28, 2019 The 5th Annual Dermatology Innovation Forum

Disclaimer

• The opinions and conclusions expressed in this forum are the viewpoints of the speaker(s) and do not necessarily reflect the official position of the U.S. Food and Drug Administration.

Generic Drugs:

- Are duplicates of brand-name drugs
- Are the same as those brand name drugs in active ingredients, dosage form, strength, route of administration, quality, performance characteristics, safety, efficacy, and intended use.

Generic Drugs

- Each ANDA (Abbreviated New Drug Application) relies on a reference listed drug (RLD)
- Generic drugs mostly cost less to develop because applicants do not repeat the safety and efficacy studies used to approve the RLD.

Chicago Tribune, 2016

Soaring drug prices

Bioequivalence Determinations

- For products with systemic site of action, BE via systemic PK endpoints (e.g. C_{max} and AUC) helps infer comparable safety and efficacy
- For products that are locally acting, it is more difficult to assess local exposure
- The site of action may not be directly correlated with systemic PK

Complex Generic Products in GDUFA II

- Complex active ingredients
 - Complex mixtures of APIs, polymeric compounds, peptides
- Complex formulations
 - Liposomes, suspensions, emulsions, gels
- Complex routes of delivery
 - Locally acting such as dermatological and inhalational drugs
- Complex dosage forms
 - Long acting injectables, implantable drugs
- Complex drug-device combination products
 - Transdermals, metered dose inhalers (MDIs)
- Other products where complexity or uncertainty concerning the approval pathway or other alternative approach would benefit from early scientific engagement

Generic Drug Industry as a Teaching Lab

- Some pharmaceutical firms have historically begun as generic drug manufacturers, but leveraged their knowhow and infrastructure towards the development of new drugs
- Innovations towards efficient manufacturing sometimes come from generic firms where price competition is a key growth and survivability driver
- Lessons and tools from reverse engineering of drug products may be applied in the new drug environment leading to innovative and improved formulations, potentially leading to better drug products

GDUFA Regulatory Science

- FDA has been playing a more active role in performing and funding research to advance drug science
- This provides new tools for FDA and industry to evaluate generic drug equivalence, to enable more efficient development of generic drugs and thus improve access
- ~\$30 million per year for stakeholder-driven generic drug regulatory science
 - Goal: Access to generics in all product categories
 - 90+ on-going projects
 - Recent focus on complex drug products

Generic Drug Science & Research Website:

https://www.fda.gov/drugs/resourcesforyou/consumers/ buyingusingmedicinesafely/genericdrugs/ucm567695.htm

Generic Drug Applications Approved by Year

www.fda.gov

Topical Formulation Quality Concepts

• What are Q1, Q2, and Q3?

Q3 Similarity

Q1 and Q2 Sameness, and Similar Physical & Structural Properties

Q2 Sameness

Same Components & Composition as the RLD Product

Q1 Sameness

Same Components as the RLD Product

www.fda.gov

Influence of Dispensing Stress on Q3

FDA

Influence of Dose Dispensing on Product Quality
Prof. Michael Roberts FDA Award U01-FD005226

Data provided courtesy of Prof. Michael Roberts & Prof. Maike Windbergs

www.fda.gov

Influence of Dispensing Stress on Q3

• Influence of Dose Dispensing on Product Quality Prof. Michael Roberts FDA Award U01-FD005226

Tests for Physical & Structural Similarity

- Microscopic Analyses of Microstructure
- Dissolved vs. Undissolved Amounts of the Drug
- Concentration of Drug in the Continuous Phase
- Size Distribution of Globules/Particles
- Drug Polymorphic State (Raman, X-ray diffraction, etc.)
- Solvent/Water Activity (Drying Rate)
- Specific Gravity
- pH
- Etc.

In Vivo Cutaneous Pharmacokinetics

FDA

• Dermal Open Flow Microperfusion (dOFM)

Images courtesy of Joanneum Research

www.fda

Future Directions

- Non-invasive methods to determine within skin drug concentrations
 - Con-focal spectroscopy
- Impact of formulation physicochemical attributes on
 - drug pharmacokinetics at the site of action
 - product use and other patient-centric issues
- Economics of niche drug products in the context of competition, pricing, and accessibility

Acknowledgements

- Robert Lionberger, PhD, Director, Office of Research and Standards, OGD
- Jonathan Wilkin, MD, Former Director, Dermatology & Dental Drugs, OND
- Sam Raney, PhD, Team Lead, Topical and Transdermal Drugs, DTP, ORS, OGD
- Priyanka Ghosh, PhD, Topical and Transdermal Drugs, DTP, ORS, OGD
- FDA Funded Collaborators
 - Mike Roberts, PhD, University of South Australia
 - Frank Sinner, PhD, Joanneum Research, University of Graz, Austria

Questions?

